Spatial and temporal expression pattern during sea urchin embryogenesis of a gene coding for a protease homologous to the human protein BMP-1 and to the product of the Drosophila dorsal-ventral patterning gene tolloid.

نویسندگان

  • T Lepage
  • C Ghiglione
  • C Gache
چکیده

A cDNA clone coding for a sea urchin embryonic protein was isolated from a prehatching blastula lambda gt11 library. The predicted translation product is a secreted 64 x 10(3) Mr enzyme designated as BP10. The protein contains several domains: a signal peptide, a putative propeptide, a catalytic domain with an active center typical of a Zn(2+)-metalloprotease, an EGF-like domain and two internal repeats similar to repeated domains found in the C1s and C1r serine proteases of the complement cascade. The BP10 protease is constructed with the same domains as the human bone morphogenetic protein BMP-1, a protease described as a factor involved in bone formation, and as the recently characterized product of the tolloid gene which is required for correct dorsal-ventral patterning of the Drosophila embryo. The transcription of the BP10 gene is transiently activated around the 16- to 32-cell stage and the accumulation of BP10 transcripts is limited to a short period at the blastula stage. By in situ hybridization with digoxygenin-labelled RNA probes, the BP10 transcripts were only detected in a limited area of the blastula, showing that the transcription of the BP10 gene is also spatially controlled. Antibodies directed against a fusion protein were used to detect the BP10 protein in embryonic extracts. The protein is first detected in early blastula stages, its level peaks in late cleavage, declines abruptly before ingression of primary mesenchyme cells and remains constant in late development. The distribution of the BP10 protein during its synthesis and secretion was analysed by immunostaining blastula-stage embryos. The intracellular localization of the BP10 staining varies with time. The protein is first detected in a perinuclear region, then in an apical and submembranous position just before its secretion into the perivitelline space. The protein is synthesized in a sharply delimited continuous territory spanning about 70% of the blastula. Comparison of the size and orientation of the labelled territory in the late blastula with the fate map of the blastula stage embryo shows that the domain in which the BP10 gene is expressed corresponds to the presumptive ectoderm. Developing embryos treated with purified antibodies against the BP10 protein and with synthetic peptides derived from the EGF-like domain displayed perturbations in morphogenesis and were radialized to various degrees. These results are consistent with a role for BP10 in the differentiation of ectodermal lineages and subsequent patterning of the embryo. On the basis of these results, we speculate that the role of BP10 in the sea urchin embryo might be similar to that of tolloid in Drosophila. We discuss the idea that the processes of spatial regulation of gene expression along the animal-vegetal in sea urchin and dorsal-ventral axes in Drosophila might have some similarities and might use common elements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enzymatic regulation of pattern: BMP4 binds CUB domains of Tolloids and inhibits proteinase activity.

In Xenopus embryos, a dorsal-ventral patterning gradient is generated by diffusing Chordin/bone morphogenetic protein (BMP) complexes cleaved by BMP1/Tolloid metalloproteinases in the ventral side. We developed a new BMP1/Tolloid assay using a fluorogenic Chordin peptide substrate and identified an unexpected negative feedback loop for BMP4, in which BMP4 inhibits Tolloid enzyme activity noncom...

متن کامل

The tolkin gene is a tolloid/BMP-1 homologue that is essential for Drosophila development.

The Drosophila decapentaplegic (dpp) gene, a member of the transforming growth factor beta superfamily of growth factors, is critical for specification of the embryonic dorsal-ventral axis, for proper formation of the midgut, and for formation of Drosophila adult structures. The Drosophila tolloid gene has been shown to genetically interact with dpp. The genetic interactions between tolloid and...

متن کامل

Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal-ventral patterning.

The Spemann organizer has long been recognized as a major source of patterning signals during the gastrula stage of amphibian embryogenesis. More recent evidence has suggested that the ventral side of the embryo also plays an important role in dorsal-ventral patterning during gastrulation through the action of signaling factors such as BMP-4. Bmp-4 is closely related to the Drosophila decapenta...

متن کامل

Molecular detection of proteolytic activity of human parechovirus 2A protein by gene expression

  Parechoviruses form one of the nine genera in the picornaviridae family, and include two human pathogens: Human parechovirus type1 and 2 (Hpev1 and Hpev2). The genome of picornaviruses encodes a single polyprotein, which undergoes a cleavage cascade performed by virus encoded proteases to give the final virus proteins. The primary cleavage occurs by 2A protein and this step is critical for vi...

متن کامل

The Drosophila dorsal-ventral patterning gene tolloid is related to human bone morphogenetic protein 1.

Mutations in the Drosophila tolloid (tld) gene lead to a partial transformation of dorsal ectoderm into ventral ectoderm. The null phenotype of tld is similar to, but less severe than decapentaplegic (dpp), a TGF-beta family member required for the formation of all dorsal structures. We have cloned the tld locus by P element tagging. At the blastoderm stage, tld RNA is expressed dorsally, simil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 114 1  شماره 

صفحات  -

تاریخ انتشار 1992